Polynomial Representation of Pictures

نویسندگان

  • Michael UNSER
  • Riccardo LEONARDI
چکیده

In many image processing applications, the discrete values of an image can be embedded in a continuous function. This type of representation can be useful for interpolation, geometrica! transformations or special features extraction. Given a rectangular M x N discrete image (or sub-image), it is shown how to compute a continuous polynomial function that guarantees an exact fit at the considered pixei locations. The polynomials coefficients can be expressed as a linear one-to-one separable transform of the pixels. The transform matrices can be computed using a fast recursive algorithm which enables efficient inversion of a Vandermonde matrix. It is also shown that the least square polynomial approximation with M' x N' coefficients, in the separable formulation, involves the inversion of two M' x M' and N' x N' Hankel matrices. Zu~mmenf~ung. In mehreren Anwendungen der Bildverarbeitung krnnen digitale Bildgrauwerten als Teile ununterbrochenen Funktionen behandelt werden. Diese Darstellung gilt auch fiir Interpolation, geometrische Transformationen oder Ermittlung yon speziellen Formen. In diesem Artikei handelt es sich um die Verrechnung einer ununterbrochenen Polynom Funktion Ffir ein gegebenes rechteckiges digitales Biid, die eine genaue Interpolation in bestimmten Punkten ermfglicht. Die Polynomial Koeffizienten k~innen mit einer iinearen trennbaren Punkttransformation ermittelt werden. Die Transformationmatrizen sind mit einem schnellen rekursiven AIgorithmus erreichbar, mit dem eine Vandermondematrize einfach umgekehrt wird. Es wird auch gezeigt, dass die polynomiale Approximation der kleinsten Quadraten mit M' x N' Koeflizienten, im Fall eines rechtwinkligen Bild, zwei M' x M' and N' x N' Hankel Matrizen Umkehrungen ernrtigt. R ~ m r . Dans beaucoup d'applications du traitement des images, on peut considrrer les valeurs discrrtes d'une image numrrique comme faisant pattie d'une fonction continue. Ce type de reprrsentation peut 8tre utile pour l'interpolation, pour effectuer des transformations gromrtriques ou extraire des proprirtrs locales. I~tant donnre une image (ou sous-image) rectangulaire de dimension M x N donnre sous forme numrrique, on montre comment on peut trouver un polynSme garantissant une interpolation exacte des points de l'image. Les coefficients du polynrme sont obtenus au moyen d'une transformation linraire bijective srparable des points de l'image. Les matrices de cette transformation peuvent ~tre calculres en utiisant un algorithme rrcursif rapide qui permet rinversion efficace des matrices de Vandermonde. Dans un deuxirme temps, on expose comment trouver la meilleure approximation polynSmiale au sens des moindres carrrs avec M ' x N' coefficients darts le cas d'une image rectangulaire, ce qui permet une formulation srparable du problrme. Le rrsuitat comprend notamment l'inversion de deux matrices carrres de Hankel de rang respectivement M' et N'.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical representation for approximating solution of fuzzy polynomial equations

In this paper, the concept of canonical representation is proposed to find fuzzy roots of fuzzy polynomial equations. We transform fuzzy polynomial equations to system of crisp polynomial equations, this transformation is perform by using canonical representation based on three parameters Value, Ambiguity and Fuzziness. 

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

On the Topology of Graph Picture Spaces

We study the space X (G) of pictures of a graph G in complex projective d-space. The main result is that the homology groups (with integer coefficients) of X (G) are completely determined by the Tutte polynomial of G. One application is a criterion in terms of the Tutte polynomial for independence in the d-parallel matroids studied in combinatorial rigidity theory. For certain special graphs ca...

متن کامل

Riordan group approaches in matrix factorizations

In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.

متن کامل

مطالعه تطبیقی اخبار خارجی تلویزیون و چهارچوب ذهنی مردم تهران از جهان خارج؛ با تأکید بر بحران فلسطین

In this article we are studying the representation and visualization of TV’s foreign news about Palestine crisis and TV’s role in Tehran citizen’s conceptualization and visualization about the events of this territory. Our main goal is analyzing and assessing audience’s conceptualization about world’s events through TV’s foreign news. For reaching to this goal we used two methods consequently: ...

متن کامل

Polynomial diffeomorphisms of C 2 VI: Connectivity of J

§0. Introduction Polynomial maps g : C → C are the simplest holomorphic maps with interesting dynamical behavior. The study of such maps has had an important influence on the field of dynamical systems. On the other hand the traditional focus of the field of dynamical systems has been in a different direction: invertible maps or diffeomorphisms. Thus we are led to study polynomial diffeomorphis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003